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Abstract--The emplacement of a heat source, such as a high-level nuclear waste package, into a geologic 
medium causes strongly coupled thermal and hydrologic behavior. Under certain conditions, a heat pipe 
may develop, with significant impact on conditions at the heat source. In an infinite, homogeneous, 
permeable medium with a constant-strength linear heat source, the partial differential equations governing 
fluid and heat flows in a radial geometry can be converted to ordinary differential equations by using a 
similarity variable, r/= r/x/t. These equations are numerically integrated using an iterative 'shooting' 
method to provide a description of temperature, pressure, saturation, heat flow, gas flow, and liquid flow 
conditions around a heat source such as a nuclear waste package. The similarity solution is vedfied by 
numerical finite-difference simulations. Illustrative solutions are given for a range of hydrologic and thermal 
parameters, and the likelihood of heat-pipe development for conditions at several proposed repository 

sites is discussed. 

1. INTRODUCTION 

THE Yucca Mountain Project (YMP) is investigating 
the feasibility of constructing a geologic repository 
for high-level nuclear waste at Yucca Mountain, 
Nevada, in a partially saturated, highly fractured 
volcanic formation. Several recent mathematical 
modeling studies [1, 2] have examined the thermo- 
hydrologic behavior surrounding a repository in 
this geologic setting. Undisturbed conditions are such 
that temperature is well below the saturation tem- 
perature, so water is primarily in the liquid phase, and 
the initial heat transfer from a waste package is mainly 
conductive. As temperatures around the repository 
increase to the saturation temperature, evaporation 
increases and vapor partial pressure becomes appreci- 
able. Heat-pipe effects may contribute to or even 
dominate heat transfer in this regime. With time the 
heat pipe moves away from the waste packages and 
leaves a gas-phase zone in which heat transfer is again 
conduction dominated. The conditions surrounding a 
waste package at some time after emplacement are 
shown schematically in Fig. 1. 

In the heat-pipe region, heat transfer is primarily 
convective. Near the heat source, liquid water vapor- 
izes, causing pressurization of  the gas phase and gas- 
phase flow away from the heat source. The water 
vapor condenses in cooler regions away from the heat 
source and deposits its latent heat of  vaporization 
there. This sets up a saturation profile, with liquid 
saturation increasing away from the heat source. The 
saturation gradient drives the backflow of  the liquid 
phase toward the heat source through capillary forces. 
The liquid then vaporizes again and repeats the cycle. 
This convective heat transfer is very efficient corn- 

pared to conduction, so it is accompanied by very 
small temperature gradients. 

The requirements for heat-pipe development are (l)  
the presence of  a volatile fluid and (2) a mechanism 
by which gas-phase fluid can flow away from the 
heat source and liquid-phase fluid toward it. Gas- 
phase flow occurs if permeability of the medium is 
sufficiently high and the far-field pressure is lower 
than that at the heat source. Thus, heat-pipe behavior 
is unlikely in deep, water-saturated formations, where 
ambient pressure is much higher than open-hole or 
backfill pressure at the proposed repository. Liquid 
flow requires sufficient mobility and capillary, pres- 
sure. Mobility depends on liquid saturation as well 

FIG. 1. Schematic of the conditions achieved at some time 
after waste emplacement (not to scale). Water is primarily 
in the liquid phase in zone 4, because T < T~,t ; two-phase 
conditions prevail in zones 2 and 3, with T ~ T,~, ; fluid in 

zone I is in the gas phase, with T > T,t. 
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NOMENCLATURE 

volumetric heat capacity 
[J m-3  K - t  ] 
rock specific heat [J kg-  ~ K-~] 
binary diffusion coefficient [m 2 s - ' ]  
discrepancy vector at upper limit of  
integration 
enthalpy [J kg-  '] 
mobility (Kj = kkrjpj/#j,j = 1, g) 
[kg s-  m m -  t P a -  i] 

intrinsic permeability [m r ] 
relative permeability 
energy accumulation term [J m -  3] 
mass accumulation terms [kg m -  3] 
pressure [Pal 
capillary pressure, P~-Ps  [Pa] 
heat flow rate [W m-~] 

~ ,n  i_ ¢"J,n mass flow rates (Q,, = ~ ~ s ,  
m = w, a) [kg s -  i m -  I] 
normalized heat flow rate, Qd2n 
[w m-'] 
normalized mass flow rates 
(Q.m = Qr,/21t, m -- w, a) 
[kg s -  ' m -  '] 
matrix of  partial derivatives for 
Newton-Raphson iteration 
radial distance [ml 
saturation 
temperature [°C] 
time Is] 
internal energy [J kg-  J] 
vector of  variables unspecified at 
lower limit of  integration 
mass fraction 
integration variable, In (r/). 

Greek symbols 
~t, rock expansivity, (lldp)Odp/~T [K-~] 
fl ratio of  kinematic viscosities for 

liquid- and gas-phase water 
fir rock compressibility, (i/dp)ddp/dP 

[Pa- '] 
), desired accuracy of endpoints of  

numerical integration 
& VLj j th  increment for Newton-Raphson 

iteration 
very small non-zero number 

r/ similarity variable, r/~/t 
x thermal conductivity [W m -  i K -  ~] 
2 parameter in the van Genuchten 

characteristic curves 
/z dynamic viscosity [Pa s] 
p density [kg m -  3] 
a vapor-liquid interracial tension 

[N m-'] 
q~ porosity. 

Subscripts 
a 

c 

e 

g 
L 
I 
r 
sat 

U 
W 

0 

air (also used as a superscript) 
capillary, constant value 
energy 
gas phase 
lower limit of  integration 
liquid phase 
rock, residual, relative 
at saturation (vapor-liquid 
equilibrium) 
upper limit of integration 
water (also used as a superscript) 
boundary condition, reference value. 

as the permeability of  the medium, since liquid is 
immobile below a certain residual saturation. 

This paper examines an idealized version of the 
problem of fluid and heat flow near high-level nuclear 
waste packages. We study the response of an infinite, 
homogeneous, porous medium with uniform initial 
conditions to the emplacement of  an infinitely long, 
linear heat source of  constant (time-independent) 
strength. Gravity effects are neglected, so the system 
has a one-dimensional radial symmetry. With these 
simplifications, the coupled partial differential equa- 
tions governing fluid and heat flow for radial geometry 
can be transformed into simpler ordinary differential 
equations through the use of  a similarity variable, 
rl ffi r/~/t. This change of variable is known as the 
Boltzmann transformation in heat conduction prob- 
lems. It has been applied to the thermohydrologic 
behavior of  geologic media by O'Sullivan [3], who 
used it to analyze geothermal well-test data. Other 
researchers [4, 5] have also used the similarity concept 

for this purpose, but have limited themselves to sim- 
plified thermodynamic relationships to allow quasi- 
analytic solutions. 

Following O'Sullivan [3], we consider the fully non- 
linear problem with realistic thermodynamic relation- 
ships, which requires a numerical integration of the 
coupled differential equations. The main difference 
from O'Sullivan's treatment is that the mass flux 
boundary condition at r = 0, appropriate for geo- 
thermal production or injection wells, is here replaced 
by a heat flux boundary condition. Furthermore, we 
include capillary pressure and heat conduction effects. 
These are unimportant for the geothermal well-test 
problem but are essential for the heat-driven problem 
considered here. Our general mathematical treatment 
includes two fluid components, water and air, 
although the specific solutions presented here are for 
water only. 

In the following sections, we first describe the devel- 
opment of  the governing equations and the techniques 
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used for their integration. Next, we compare the simi- 
larity solution to results of  numerical simulations, 
with excellent agreement. Finally, some characteristic 
features of  thermohydrologic behavior in a geologic 
medium around a heat source are illustrated through 
application of  the similarity solution. 

2. BASIC EQUATIONS 

The governing equations for fluid and heat flow for 
a single-component system in radial geometry as given 
by O'Sullivan [3] consist of  a mass balance for water 
and an energy balance 

aMw 1 0 Q ,  
~t +2rcr 63~ - - - 0  (i) 

~m, l 0Q. 
a-7 + 2,~--; 0--7 = o. (2) 

If air is present in the system, a mass balance for air 
is also needed 

and gas-phase fluids coexist in a porous medium, a rela- 
tive permeability function may be used to account for 
the decrease in permeability of each phase due to 
interference from the other phase. In the gas phase 
there is also a flow component due to binary diffusion 

4. = O_: + "Q. = (kk.o,X:rOP,   Tr ] 

kk,,p,X7 r ~P, ~XT\ 
+ - D,,psr--~-r) lq ~r 

for m = w , a  (6) 

where k is intrinsic permeability, k~ is relative per- 
meability,/~ is dynamic viscosity, P is pressure, and 
D,, is the diffusion coefficient for vapor-air mixtures. 
Liquid and gas pressures are related by the capillary 
pressure through Pt = Ps+P,. If no air is present, 
X ~ = 1, X" = 0, and the m = a case of equations (4) 
and (6) is identically zero. The heat flow rate contains 
convective and conductive terms 

~M~ 1 aQ. 
a~ + 2nr ~r = 0. (3) 

The subscripts w, a, and e refer to water, air, and 
energy, respectively. To simplify the notation, we 
introduce normalized flux terms, given by {~ = Q/2n. 
If  the rock and fluid are assumed to be in local thermal 
equilibrium at all times, the accumulation terms are 
given by 

M~ = dp(S, piX~'+SspsXT) for m = w, a (4) 

Me = (1-dp)p,c,T+¢(S,p,u,+S,p=us) (5) 

where ~b is porosity, S is saturation, p is density, X is 
mass fraction, c is specific heat, T is temperature, and 
u is internal energy. The subscripts 1, g, and r refer 
to liquid phase, gas phase, and rock, respectively. 
Additionally, we have the conditions St + Sg = 1 and 
X;" + X~' = 1 for m = w, a. The assumption of  local 
equilibrium between rock and fluid holds whenever 
the time required to reach local equilibrium, essen- 
tially the time it takes for diffusive heat flow to cross 
a rock grain, is much shorter than the times of  interest 
in the problem. The thermohydrologic response 
shown in Fig. 1 propagates away from the heat source 
at a speed which is also controlled by diffusive heat 
flow, the dominant heat transfer mechanism in zone 
4. However, the distances of  interest are many orders 
of magnitude greater than rock grain dimensions, so 
the time scales are substantially longer than the time 
required to reach local equilibrium. 

The mass flow rate for each component, the sum of 
liquid- and gas-phase flow rates, is given by Darcy's 
law, which is commonly used to describe both liquid- 
and gas-phase fluid flow in porous media. Darey's law 
has been widely experimentally validated for porous- 
medium Reynolds numbers less than one [6]; by 
contrast, for the examples given in this paper the 
Reynolds numbers are less than 10 -4. When liquid- 

~T 
O_o X " ' °  = ~ ~ - ~r ~ (7) 

j=l,g 

where h is cnthalpy and x is thermal conductivity. 
Equations (1)-(3), (6), and (7) make up a set of six 

coupled first-order partial differential equations for 
six unknowns (or primary variables). In single-phase 
regions S s is constant, so ~ ,  ~,, Qc, Pv Xi, and T 
may be taken as the primary variables. In two-phase 
regions Tdepends on P, and X through the saturation 
curve, so ~w, Qa, {~c, Pg, Xg, and S s become the 
primary variables. All other thermophysical prop- 
erties can be expressed as functions of the primary 
variables, as described in the Appendix. 

Note that by substituting equations (6) and (7) 
into equations (1)-(3) we could obtain a set of three 
second-order differential equations for three un- 
knowns: Pv X~, and T in single-phase regions; and 
Pv X~g, and S~ in two-phase regions. Although this set 
of  equations may seem simpler than a set of six first- 
order equations, for numerical integration purposes 
it is preferable to treat first-order equations. 

The uniform initial conditions are ~ven by 
~ w = { ~ , = ~ ,  =0 ,  P.=Po, X;=Xo,  and S,-=So 
for all r. The boundary conditions as r--. 0 are no 
mass flow ({~, = 0, ~a = 0) and constant heat flow 
( ~  = Q,o/2n--~o, where Q~0 is the heat source 
strength per unit length). The boundary conditions as 
r ~ o o  are unchanged from the initial values: 
Ps = P0, X; = X0, and S~ = So. 

Following O'Sullivan [3], we introduce a similarity 
variable r /= r/~/t and rewrite the governing equations 
as  

r/2 dMm 
2 dr/ b = 0  for m = w , a  (8) 

r/'- dM~ dO, 
2 d~-  + -d-~-~ = 0  (9) 
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= T, 

--O,,p~ for m f w ,  a (10) 

.~, dT 

j - - I . $  
m - - w . a  

where liquid- and gas-phase mobilities have been 
defined as Kt - kk,lpd#l and K, -- kkrsPd#r Together, 
the initial and boundary conditions become boundary 
conditions given by 

{ ~ = 0 ,  ~ , = 0 ,  {~,--{~o asr/--~0 (12) 

P s = P o ,  Xs--Xo,  S, So as r/ ---} oo. (13) 

It is well known that the 'natural' variable for 
axisymmetric heat-flow and fluid-flow problems is 
In (r), rather than r itself. (The log term arises from 
the form of the Laplacian in radial coordinates.) In 
light of this fact, we make the substitution z = 
in (r/) = In (r/x/t). After replacing P, with Ps+P, the 
governing equations become 

l dMm ~ f ' t  

t-e-Z:-u~dm=0 for m = w , a  (14) 
2 dz dz 

2 dz + e - ' "  = 0  (15) 

method [7] must be used (see below). Further diffi- 
culties arise from the non-linear dependence of  the 
coefficients in equations (14)-(17) upon the thermo- 
dynamic parameters, especially in connection with 
multiphase flow effects (relative permeability, etc.) 
and phase change behavior. 

We have achieved a computational solution for a 
simplified version of  the problem stated by equations 
(14)-(17). The main simplification made is omission 
of  the air component, which reduces the dimen- 
sionality of  the problem from six coupled ODEs to a 
more easily tractable set of  four ODEs. A further 
simplification is the restriction of  admissible relative 
permeability functions to a mathematically well- 
behaved class of smooth functions. It is recognized 
that at the potential repository horizon at the Yucca 
Mountain site, significant flow effects will arise both 
from the presence of  air [2] and from the extremely 
non-linear relative permeability relationships charac- 
teristic of  a fractured-porous medium [8]. Our main 
objective in the present work has been to develop an 
implementation of the similarity solution technique 
under 'mixed" boundary conditions and to establish 
some reference cases for the behavior of strongly heat- 
driven flow systems with phase change. Work is 
underway to achieve a more realistic and detailed 
implementation of  the specific conditions encountered 
at Yucca Mountain. 

~z s dPc 
= - + K, XD - K,X ' dz 

dX~ 
-Dv~pf~z- z for m = w, a (16) 

~c = -,,,~'., [(hTt K, X~' +h~Krg~)d-~ -' 

~z ¢ m dXT-I dT + h~ KIX';' +hiDv, ps--~z J-K-~z. (17) 

The boundary conditions become 

O . = 0 ,  as 0 8 )  

P,=Po, X~s=Xo, S,=So as z--- ,~.  (19) 

3. SOLUTION OF EQUATIONS 

Equations (14)--(17) represent a set of  six coupled 
first-order ordinary differential equations (ODEs). 
Solution of  the system is straightforward in principle, 
by numerically integrating from z = - o o  to oo, but 
in practice two complications arise that require special 
numerical techniques. One difficulty is posed by the 
'mixed' boundary conditions, equations (18) and (19), 
which specify flux terms ~w, {~., and ~c at z --- - oo, 
while the thermodynamic functions Pv X~w, and S s 
satisfy boundary conditions at z = oo. Thus, no com- 
plete set of  starting values is available for integration, 
and an iterative approach known as the shooting 

3.1. Shooting method 
The first step of  the shooting method [7] is to choose 

trial values for the unspecified variables at the lower 
limit of  integration ZL = - - ~ .  From the general 
description of  the thermohydrologic behavior of the 
system given in Section 1, we know that at z,  -- - oo 
(long times; close to the heat source) gas-phase con- 
ditions prevail, so the unspecified variables are Pg and 
T, which can be defined to be the components of a 
vector V. The trial values at ZL are denoted PL and TL, 
or collectively, VL. The numerical integration is then 
carried out from zt = - o o  to zu = ~-. We use a 
fourth-order Runge-Kutta scheme, but other numeri- 
cal integration algorithms could be used. The value of  
V at the upper limit of integration :t, is denoted Vu; 
it can be viewed as a function of  Vt. When air is 
not included in the analysis, liquid-phase conditions 
prevail at zu -- oo (initial time; far from the heat 
source), so the primary variables are P, and T, and 
Vu has components Po and To. Boundary conditions 
are specified at :u  for each component of V, so we can 
define a discrepancy vector F as the difference between 
Vu and the specified boundary conditions at Zu. The 
goal is to find an improved value of  VL, denoted 
V~, that reduces the absolute value of F below an 
acceptable limit. We accomplish this via Newton- 
Raphson iteration; that is, we solve the following 
equation for V~.: 

R(V~-  V , )  = - V (20)  



A similarity solution for two-phase fluid and heat flow 1209 

where R is the Jacobian matrix, with components Rq 
(i,j = l, 2) given by 

OF, 
R o = OV,i. (21) 

The components of  the matrix R are obtained by 
numerical differentiation. This requires two addi- 
tional numerical integrations, each using a modified 
value for one component of V L, denoted VLj+cSVLj. 
The partial derivatives of equation (21) are then 
approximated by 

OF, F,(v~,, V~j+6VO-F,(V. .  V.)  

0 gtj 3 gtj 
(22) 

In general, because the equations are nonlinear, a 
numerical integration initialized with V* will not 
yield a zero value for F, so the procedure must be re- 
peated. Iteration continues until IFA < ~'lVu;I, and 
IV*,- v d  < ~l vu[ for i = I, 2, where 7 represents the 
desired accuracy for V, and Vu. 

In a numerical procedure, using truly infinite inte- 
gration limits is impossible; infinity must be approxi- 
mated by suitably large finite values. As will be seen 
later, because of the nature of the present problem, the 
solution is insensitive to the values of  the integration 
limits if they are beyond a certain range. 

To use the shooting method, we need to express the 
governing equations in terms of  derivatives of the 
primary variables with respect to the similarity vari- 
able. This is done through use of the chain rule for 
partial derivatives. Recall that different sets of pri- 
mary variables are applicable for single- and two- 
phase conditions. 

When air is not included in the analysis, the m = a 
terms of equations (14)-(17) are not needed since X" 
and O-, are always zero, and the m = w terms are 
greatly simplified since X ~ = 1 throughout. In the 
following, the superscript w is omitted when no ambi- 
guity results. 

3.2. ODEs for single-phase regions 
The distinction between P~ and Pt is not meaningful 

when only one phase exists, so the pressure is referred 
to simply as P in single-phase regions, and the chain 
rule takes the form 

d dP 0 dT a 
+ (23) 

dz dz OP dz aT 

and equations (14)-(17) become 

i(~Mw dP 0M, dT'~ -2.-do-" 
- 9 _ \ - ~ -  ~ + ~ d-z-z) + e dz = 0 (24) 

_ I~dM. dP OM~ d T ) +  e 
2 \ a e -d-zz + - ~ -  -~z ] -2:~z~=O (25) 

dP 
O-. = -Kj~zz (26) 

h K d P  dT 
O-" = -  ~ J-d-zz-K-d-z-z" (27) 

The subscript j is g for the gas phase and I for 
the liquid phase, which are labeled zones 1 and 4, 
respectively, in Fig. 1. Capillary pressure P, is constant 
in single-phase regions, so dPddz = O. The accumu- 
lation terms simplify to 

M, = ¢~pj (28) 

Me = (1 -r~)p,crT+ ~ppj. (29) 

We would like to rearrange equations (24)-(27) to 
isolate the z-derivative terms on the left-hand side. 
Equation (26) can be trivially solved for dP/dz, which 
can be substituted into equation (27) to yield an 
expression for dT[dz. Equations (24) and (25) can be 
easily solved for do-Jdz and do-ddz, respectively, in 
terms of dP/dz and dT/dz. Altogether, we obtain the 
following set of equations to integrate for zones 1 and 
4: 

dP O-~, 
(30) 

dz Kj 

dT= o-©--hjo-w (31) 
dz ~; 

dO.. e:: (aM,, dP aM,, dT) 
dz = 2 \ 0 P  dz q aT ~ (32) 

do-o e ~ (aMo dP aM, dT'~ 
dz = ~ \ a P  dz + ~ d z z ) '  (33) 

3.3. ODEs for two-phase regions 
For two-phase regions the chain rule takes the form 

d dP s a dS s a 
+ - -  (34) - - =  

dz dz aP e dz aS s 

and equations (14)-(17) become 

I(OMw d e  e aM.  dS,'~ _~do- ,  
- 2 \ a e ,  dz + -dTz} + e  = 0 (35) 

1 (aM. dP, aM. dSs'~ 2: do-, 
2 \ a P ,  d~ + 0S~- ~zzJ + e -  "--~-z = 0  (36) 

F [ ape'\ l d P  s [ ~P¢'~dS s 
o--=- k 'k' + dz 

(37) 

0,-- -[h,K,(l + ~p°I drldP, ~,)+h,K,+~Tb~, j ~; 

as , /  _ (38) 

Because we have neglected vapor-pressure-lowering 
effects in the present work, there is no OT/dS s term in 
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equation (38), and the dT/~P s term is replaced by 
dT/dP r This reflects the simple dependence of  tem- 
perature on pressure through the saturation curve. 
Note from equations (4) and (5) that the accumu- 
lation terms M,  and Me contain terms Pt, Ps, u,, u s, 
and ~ that depend on pressure both explicitly, and 
implicitly through temperature, since T -- T,t(P,). 

As in the single-phase region, we would like to 
rearrange equations (35)-(38) to explicitly obtain 
dPs/dz and dSs/dz from equations (37) and (38), so 
that the remaining unknowns dQ.,/dz and dO,/dz can 
be found by simple substitution into equations (35) 
and (36). To accomplish this, it is necessary to divide 
by K~, which is proportional to the liquid relative 
permeability ka. By definition, ka > 0 when S~ > S~,, 
where S~, is the residual liquid saturation. In the pre- 
sent work, to avoid the complications arising from 
K~ = 0 for S, ~< S~, we consider only cases where 
S~, = 0, so k,, > 0 throughout the two-phase zone, and 
there is never a problem dividing by K~. A two-phase 
region with a mobile liquid phase is shown as zone 3 in 
Fig. 1. In future work we plan to address the situation 
where S~, > 0 and a two-phase zone with an immobile 
liquid phase develops (zone 2 in Fig. 1). 

With the condition K~ > 0, equations (37) and (38) 
can be solved for dPs/dz and dS~/dz. Equations (35) 
and (36) can be solved for dQ,/dz and dQ.Jdz, respec- 
tively, in terms of dPs/dz and dSg/dz. Altogether, we 
obtain the following set of equations to integrate for 
zone 3 : 

(39) 
dz dT 

(h ,  - h , ) r  s + r dp  s 

d S , ( [ ( t ? P ¢ ' d . _ _ f  = -] 0 K, 

~ ~P,  dT 

dT dP¢ ,,o, 

dz = 2 \ ~ e 8  dz + ~ - ,  (41) 

d~. e"(OM, dP s OM. ddS.) 
dz - 2 ~ . d P ,  dz  t- 0Sg-g . (42) 

3.4. Transitions between zones 
In order to make the transition in primary variables 

required at phase changes, at each step in the numeri- 
cal integration the current phase conditions are 
checked. For the gas phase (zone 1), as equations 
(30)-(33) are being integrated, the temperature T is 
compared to the saturation temperature for the pres- 
sure, T.~(P). If  T >  T. t+e,  where 8 ~ 10 -8, the gas- 
phase/two-phase transition has not been reached yet. 
The integration step is accepted, and the integration 

proceeds, still in zone 1. If  T < T , , - e ,  the integration 
has gone beyond the phase-change point. The step is 
then rejected and attempted again using a smaller step 
size. If T , , - 8  < T < T, ,+8,  the phase-change point 
has been reached, and the transition to two-phase 
conditions (zone 3) is made, with gas-phase saturation 
S s replacing T as the primary variable and equations 
(39)-(42) replacing equations (30)-(33) in the inte- 
gration. At the zone I/zone 3 transition, S s is init- 
ialized as 1 - S r  'in, where S[ ~i" is the minimum liquid 
saturation for which liquid relative permeability 
ka > 8. The value of  S ~  ~" depends on the form of the 
relative permeability function. 

At each step in zone 3, as equations (39)-(42) are 
being integrated, Tis set to T,t(Ps) and S s is compared 
to zero. If  S s > 8, the two-phase/liquid transition has 
not been reach yet; the step is accepted, and the inte- 
gration proceeds, still in zone 3. I f S  s < -8 ,  the phase- 
change point has been passed. The step is then rejected 
and repeated using a smaller step size. I f - 8  < S s < s, 
the phase-change point has been reached, and the 
transition to zone 4 is made, with T becoming the 
primary variable and equations (30)-(33) replacing 
equations (39)-(42) in the integration. 

The parameter s is chosen to be very small com- 
pared to the numbers it is added to  or multiplied by, 
but large enough to be treated accurately by a finite- 
precision computer. We take 8 = 10-", where n is half 
the number of significant figures the computer uses to 
express real numbers. The present work was carried 
out on a Cray X-MP at the National Magnetic Fusion 
Energy Computer Center, Lawrence Livermore 
National Laboratory. This computer expresses real 
numbers with approximately 16 significant figures, so 
8 = 10 -8.  

3.5. Step-size control 
At each step in the numerical integration, the results 

are compared with results obtained by splitting the 
step into two half-steps. If the results agree within a 
specified criterion, the step is accepted and step size is 
increased for the next step ; if they do not, the step is 
rejected and repeated using a smaller step size. 

4.  C O M P U T A T I O N A L  P R O C E D U R E  

As an example of  the application of the similarity 
solution, we consider a heat source of  strength 
Q~o ffi 200 W m -  ' emplaced in a porous medium that 
has the material properties and characteristic curves 
given in Table 1. The initial conditions are P0 = 
0.1013 MPa and To = 26°C. For the most part, the 
properties and functions described in Table 1 are 
representative of  a laboratory sand pack used to 
study steady-state heat-pipe behavior [9]. The intrinsic 
permeability k has been decreased by a factor of  10 
and the rock compressibility ~,=(I/O)O0/OP 
increased by a factor of  10 to simplify the compu- 
tation. Neither change is necessary for the method to 
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Table 1. Material properties, characteristic curves, and boundary conditions used 
for the similarity-solution results shown in Figs. 3 and 4 

Material properties 

intrinsic permeability k 10-~s m z 
initial porosity ~b0 0.40 
rock compressibility ~, 10-7 Pa -  
rock expansivity a ,  0 K -  
rock density p, 2580 kg m -  3 
rock specific heat Cr 840 J kg-  a K -  ' 

thermal conductivity [10, 11] : 
liquid-saturated rock xl !. 13 W m -  ' K -  
gas-saturated rock % 0.582 W m -  ~ K -  

Characteristic curves 

relative permeability [12, 13]: 
liquid ka S 31 
vapor krs S~ 

capillary pressure [14] Pc -a(T)(dp/k)t/:.f 
J'= 1.417S~- 2.12S~ + i .263S~ 

Boundary conditions 

z--, -oo Q.o 0 
Q,0 200Win -I 

z --, oo Po 101 325 Pa 
To 26°C 

work in general; the effects of the changes are 
described in Section 6. 

The first step in applying the similarity solution is 
to choose ZL and zu, the limits of integration, and trial 
values for Tand P at ZL, which are denoted T(zL) = TL 
and P(ZL) = PL. Some clues are provided by exam- 
ining the much simpler problem of a heat source 
emplaced in a medium in which all heat transfer is 
conductive. For constant thermal conductivity xc and 
heat capacity Co, this problem has an analytical solu- 
tion given in terms of the exponential integral [15] 

Q¢ = ~ exp \ ~ )  (43) 

:~ I r2  

r=  ro+2-   j ° )d, '  

= t o -  ( 4nx¢ k ~ / .  (44) 

Figure 2 shows the temperature and heat-flow profiles 
for thermal properties corresponding to liquid water 
(x¢-- 1.13 W m -I  K -I,  C~=2.9 MJ m -s K -I) and 
water vapor (x¢ = 0.582 W m -I  K -I,  C, = 1.3 MJ 
m-s  K-~) saturating a medium that has the thermal 
properties given in Table 1. Appropriate limits of 
integration for this problem would be zc < - 10 and 
zu > - 5 ,  beyond the region of changing heat flow. 
Anticipating variations in fluid flow as well as heat 
flow, we arbitrarily extend the limits in both directions 
to obtain ZL = --15 and zu = --3 as tentative limits 
for the similarity-solution integration. For a van- 
ishingly short heat pipe, that is, a direct transition 
from gas to liquid phase, Tc would fall between the 

T(zO values for the liquid and gas curves shown in 
Fig. 2, which are 252 and 468°C. Thus, we take 
TL - (252+468)/2 = 360°C as an initial guess for the 
temperature boundary condition. If the length of the 
heat-pipe region turns out to be substantial, this value 
of TL will be too high. The conduction solution does 
not provide any information on pressure so we take 
PL = Po = 0.1013 MPa. 

The numerical integration from ZL = - - 1 5  to 
ZO = -- 3 results in To --- 45.6°C and Pu = 0.0509 MPa 
(Table 2). For this 'first shot', Tu and Pu are not very 
close to To and P0, which is not a surprising result in 

300 [ , . • ~ ~ . 

/ ~ T \ L!,quid 

, , o  f ......... 

F \ \ i o .  

- 1 7  - 1 3  - 9  - 8  - 1  

z=ln(r/) 
Fro. 2. Conduction-only temperature and heat-flow profiles 
for liquid-saturated and gas-saturated media. For this and 
all successive figures, z --- In (~/) = In (r/~/t), with r in meters 

and t in seconds. 
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Table 2. Details of the shooting method for the results shown in Fig. 3 

Shot Increment PL (MPa) TL (°C) Pu (MPa) Tu (°C) 

1 - -  0.10133 360.00 0.05088 45.62 
tiP, 0.10033 360.00 0.04982 45.23 
t iT L 0.10133 354.00 0.05090 42.76 

2 - -  0.14864 279.86 0.10064 22. I I 
tiPL 0.14764 279.86 0.09960 21.82 
tiTt. 0.14864 273.86 0.10065 19.07 

3 - -  0.14929 287.19 0.10133 25.99 
Converged 

Increments: tiPL = ~0.001 MPa, t iTt .=-6.0°C (comparable results are 
obtained for increment values in the range 10-~<ltiPLI <0.02 and 
0.006 < ItiTd < 24). 

Accuracy : 3' = 0.03. 

view of  the simplistic initial guesses used. The New- 
ton-Raphson iteration requires that the integration 
be repeated twice for each shot, using a modified value 
of PL, PL+6PL, in one case and a modified value of 
TL, TL+~ST,, in the other. The values chosen for 6PL 
and 6Tt. must be small enough to yield an accurate 
approximation for the partial derivatives given in 
equation (22) but large compared to the errors gen- 
erated in the numerical integration. By solving equa- 
tion (20) we obtain improved values of  PL and TL 
for the second shot. After three shots the solution 
converges, as shown in Table 2. Figure 3 shows the 
temperature and pressure profiles for each shot. In all 
figures, pressure shown in the two-phase region is Pg. 
Each integration takes about 420 steps; the whole 
procedure uses 20 s of  CPU time on a Cray X-MP 
computer. 

Sometimes an initial guess may be too poor to allow 
the numerical integration to be completed. For  ex- 
ample, if TL is tOO small, temperatures drop below 
0~-C and the equations of state for liquid water and 
vapor are not applicable. Without values of  Tu and 
PtJ, the Newton-Raphson iteration cannot be done. 
Other times the integration can be completed, but 
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0.4  n 

0.2 

0 
- I  

FIG. 3. Temperature and pressure profiles illustrating the 
shooting method. 

the T,  and Pu values are so far from To and P0 that 
the Newton-Raphson iteration diverges. In practice, 
the usual procedure is to perform a numerical inte- 
gration with an initial guess for TL and PL, plot the 
resulting T and P profiles, and choose improved 
values of TL and PL based on general features of  the 
profiles. After one or two repetitions of  this pro- 
cedure, the profiles should be close enough to the true 
solution to allow efficient use of Newton-Raphson 
iteration. 

Figure 4(a) shows the pressure, temperature, and 
saturation profiles for the converged solution, while the 
solid lines in Fig. 4(b) show the liquid, gas, water 
(liquid plus gas), and heat flows. The lower limit of 
integration ZL is beyond the region where fluid or heat 
flow vary, but at zu = - 3 ,  Qi is still changing, so the 
integration should be continued. Both T and P are 
nearly constant around z = - 3, so extending the inte- 
gration will not require additional Newton-Raphson 
iterations. The dashed lines show Q,, Qv and Qe values 
obtained by continuing the integration from zt = - 3 
to zu = - 1.4. This part of  the integration requires 
6780 steps, significantly more than the 420 required 
to integrate between ZL = --15 and Zu = - 3 .  The 
form of equations (32) and (33) dictates that as z 
increases, step size decreases. This decrease becomes 
significant for z > - 5, and overwhelming for z > - 1. 

Note from the definition of  the similarity variable 
that Fig. 4 represents both a spatial distribution at a 
given time, with distance from the heat source increas- 
ing from left to fight, and a time sequence at a given 
point in space, with time increasing from fight to left. 
The signature of  the heat pipe is the large liquid-vapor 
counterflow shown in Fig. 4(b), with net water flow 
nearly zero, and the corresponding nearly isothermal 
zone shown in Fig. 4(a). The larger temperature gradi- 
ent and constant pressure within the vapor zone 
(z > - 11.8) indicate that conduction is the dominant 
heat-transfer mechanism there. In the liquid zone 
(z > - 9 . 6 )  there are two domains. Just beyond the 
two-phase zone there is a region with a linear tem- 
perature gradient, constant heat flow, and small mass 
flow, which indicates a conductive regime. At the 
location of  the heat-flow front (z ~ - 7 ) ,  mass flow 
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Fro. 4. Temperature, pressure, and saturation profiles (a) 
and heat-, mass-, liquid-, and gas-flow profiles (b) for the 

problem described in Table 1. 

away from the heat source increases. This out flow is 
necessary because the water vapor forming at the heat 
pipe is much less dense than the liquid water it 
replaces. The out flow occurs at the heat-flow front 
because the changing heat-flow rate causes differential 
heating of the liquid; liquid density differences then 
create the small pressure gradients that drive the out 
flow. 

5. C O M P A R I S O N  W I T H  N U M E R I C A L  
S I M U L A T I O N S  

The numerical model TOUGH [16] has been used 
to verify the similarity solution. TOUGH (transport 
of unsaturated groundwater and heat) calculates the 
two-phase flow of  air and water in gaseous and liquid 
phases together with heat flow using the governing 
equations shown in Section 2. As described in the 
Appendix, material properties vary with pressure, 
temperature, and saturation. TOUGH uses an inte- 
gral-finite-difference method that is applicable for 
one-, two-, or three-dimensional flow problems in 
porous or fractured porous media. The governing 
mass- and energy-balance equations are strongly non- 

linear and are solved simultaneously, using Newton- 
Raphson iteration. 

A one-dimensional, radial, calculational mesh with 
90 elements is used to calculate pressure, temperature, 
and saturation in a porous medium surrounding a 
heat source of  strength Q.o = 200 w m -  '. Material 
properties and mesh dimensions are given in Table 3. 
Initial conditions everywhere are P = 0.1013 MPa, 
T = 26°C, and S~ = 1. The innermost element of  the 
mesh includes the heat source; at the outermost 
element P and T are held constant. This approximate 
implementation of the similarity-solution boundary 
conditions for z = - ~ and oo is unavoidable with a 
numerical model, which is necessarily of finite extent. 

A simulation for 10000 years takes 475 time steps 
and requires 8.6 rain of  CPU time on a Cray X-MP. 
Figure 5, which shows temperature, pressure, and 
saturation (Fig. 5(a)) and heat, mass, liquid, and gas 
flows (Fig. 5(b)) vs radial distance for a series of times, 
illustrates the development of the heat pipe and its 
migration away from the heat source. Figure 6 shows 
the same variables plotted as a function of : = In (r/ 
x/t), with profiles for 21 different times displayed. The 
close agreement between the profiles for different 
times verifies the use of the similarity concept for this 
problem. The small spread between the profiles can 
be understood from the observation by Schroeder et 
al. [17] that, for a numerical solution calculated on a 
finite-difference grid, there is only an approximate 
invariance with respect to the similarity variable, 
because of the finite grid spacing. Data from the inner- 
most and outermost mesh elements are not included 
in Fig. 6 because grid effects are most pronounced 
where boundary conditions are implemented. The 
greater spread between the profiles at the inner limit 
of  the heat pipe results from early-time profiles, when 
the heat source is close to the heat pipe. Later-time 
profiles, when the heat pipe has moved further from 
the heat source, are more accurate. At still later times, 
the liquid flow away from the heat source reaches the 
constant-pressure boundary at the outer limit of the 
mesh, so the mesh no longer represents an infinite 
medium properly, which causes the liquid flow profiles 
to diverge. Figure 7 compares an intermediate-time 
profile, for which mesh effects are minimal, and the 
similarity solution. The match is excellent. 

6. ILLUSTRATIVE EXAMPLES 

In this section we examine significant features of 
the response of  a porous medium to emplacement 
of  a strong heat source in one-dimensional radial 
geometry. In particular, the dependence of system 
behavior upon major thermal and hydrologic param- 
eters is illustrated by way of  calculated examples. 

6.1. Relative permeability functions 
Five different relative permeability functions are 

described in Table 4 and plotted in Fig. 8(a) as a 
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Table 3. Material properties, characteristic curves, and mesh spacing used for the TOUGH 
simulation 

Material properties 

intrinsic permeability 
initial porosity 
rock compressibility 
rock expansivity 
rock density 
rock specific heat 
thermal conductivity [ 10, 1 I] : 

liquid-saturated rock 
gas-saturated rock 

lo-” mf 
0.40 
IO-‘Pa-’ 
0 K-’ 
2600 kg m-’ 
700 J kg-’ K-’ 

1.13 W m-I K-t 
0.582 W m-r K-’ 

Characteristic curves 

relative permeability : 
liquid 
vapor 

capillary pressure [ 141 
t 
p: 

Mesh spacing 

Element 

: 
i,i= 3.90 

Size Comments 

Ar, = 0.016 m Contains 200 W m-’ heat source. 
Ars = 0.010 m 
Ar, = aAr,_ , a = 1.138 

Center of element 90 is 6755 m ; 
P, and Tare held fixed there. 

function of liquid saturation S,. The linear, cubic [12, 
131, and Corey [18] functions are commonly en- 
countered in the petroleum literature; the Verma et al. 
[I91 function was developed from laboratory exper- 
iments on liquid-vapor water flow; and the van 
Genuchten [20] liquid relative permeability function 
comes from the soil sciences. As is traditional in the 
soil-science approach to fluid flow, no gas-phase rela- 
tive permeability function is presented in the van 
Genuchten work [20], so we take k,‘ = 1 -k,,. For the 
parameter 1 we use 0.45 [21]. Figure 8(b) shows the 
temperature, pressure, and saturation profiles cal- 
culated with the different relative permeability func- 
tions and the other values from Table 1. There is a 
large variation in heat-pipe length. The cubic and 
Corey curves (Fig. 8(a)) are quite similar and yield 
similar profiles (Fig. 8(b)) with relatively short heat 
pipes. The linear and Verma curves (Fig. 8(a)) are 
similar for k_ but quite different for k,,. The cor- 
responding saturation profiles (Fig. 8(b)) are similar 
for large values of S, but very different for .S, < 0.25, 
which results in heat pipes of very different length. 
The van Genuchten k, curve is quite different from 
all the others, and the resulting saturation profile is 
also distinct, but the heat-pipe length is similar to that 
for the linear curves. Note that the linear and van 
Genuchten curves share the property that k,, + k, = 1 
(for the other cases k,,+k,s < 1) and that the heat- 
pipe length is significantly greater for these cases. 

The effect of the relative permeability function can 
be predicted qualitatively by examining equation (40) 

for dSJdr. To facilitate comparison with the figures, 
which show S, rather than S,, we replace dSJdr with 
- dS,/dz 

-&[“‘Z( 1+ %)+hsKs+xg]l/ 

dT KaPc 
(h,-h)K,+~dp, 1 I ,as, . (45) 

When heat-pipe effects are significant, as in the ex- 
amples shown in Figs. 4(a), (b) and 8(b), equation (45) 
can be simplified. Figure 4(b) shows that in the two- 
phase region net water flow Q* is zero and heat flow 
Qc is constant. Furthermore, aP,/aP, is generally 
small, and KdT/dP, is small compared to (h, - h,)K, if 
conduction is small compared to convection, that is, 
if the heat-pipe region is nearly isothermal. Thus, an 
approximate version of equation (45) may be written 

d5r 
dr=- 

where K8 = kk,&p8 and K, = kk&p,. Under the 
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FZG. 5. TOUGH simulation for temperature, pressure, and saturation (a) and heat, mass, liquid, and gas 
flows (b) as a function of radial distance (in meters) for a series of times. 

nearly constant-temperature and constant-pressure 
conditions of  the heat-pipe region, Ps, Pt, Ps, and Pt 
are approximately constant and can be combined into 
a parameter / / ,  defined as the ratio of  the kinematic 
viscosities of  the liquid and gas 

/zl/ pt 
p = ~,,/p---; (47) 

For P= ~ 0.1 MPa  and T ~  100°C, ~ ~ 0.01. Equa- 
tion (46) may then be written as 

d-'~'. "~ aPe kp s "~ + " (48) 
(h=-  hi) ~-~= Ps 

Thus, dS~/dz  is controlled by the smaller of k,  s and 
k . / ~ .  For large values of  St, k,g is the controlling 
factor. Figure 8(a) shows that the value of  k, s for the 
van Genuchten function is far larger than the rest, 
while the cubic and Corey functions are similar and 
very small, and the linear and Verma functions are 
similar and of  intermediate magnitude. This variation 
is reflected in the upper portion of  the saturation 
profiles in Fig. 8(b), where the van Genuchten St pro- 
file has the smallest slope, the cubic and Core), profiles 
are steepest, and the linear and Verma profiles are in 
between. For small values of  St, k ,  is the controlling 
factor. Figure 8(a) shows that the values of  k .  for the 
linear and Verma functions are very different, leading 
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function ofz=ln(r/~/t) ,  with profiles from 21 different saturation profiles (a) and heat-, mass-, liquid-, and gas-flow 

times included, profiles (b). 

to the diverging saturation profiles seen in Fig. 8(b). 
The k~ curves for the cubic and Corey functions are 
similar, so the saturation profiles remain close to- 
gether. The Verma and cubic functions use the same 
k~ curve, as evidenced by the parallel saturation pro- 
files for small values of  S,. All the k,, curves except the 
linear one become vanishingly small as S, approaches 
zero, which leads to the sharp down turn in the satu- 
ration profile that is characteristic of  all cases except 
the linear one. 

6.2. Intrinsic permeability 
Figure 9 shows the temperature, pressure, and satu- 

ration (Fig. 9(a)), and the liquid, gas, water, and 
heat flow (Fig. 9(b)) profiles calculated for three 
rather large values of  intrinsic permeability, k = 
10 -~2, 10 - '3 ,  and 10 - .4 m' ,  using the Verma et al. 
[19] relative permeability functions (Table 4) and 
the other values from Table 1. The most striking fea- 
ture of  Fig. 9(a) is the large decrease in heat-pipe 
length with decreasing permeability. Additionally, 
both heat-pipe temperature and temperature gradient 
increase with decreasing permeability, because a 

larger pressure gradient is needed to drive fluid flow, 
and temperature depends on pressure through 
T,t(P,). Conduction increases in the heat-pipe region 
as it becomes less isothermal. Figure 10 shows 
the same profiles for lower values of  intrinsic 
permeability, k -- 10- ,5 and 10- ,7 m:, again using the 
Verma relative permeability functions and the other 
values from Table I. In the heat-pipe region, con- 
duction becomes increasingly important relative to 
convection as permeability decreases, until for 
k ffi 10- ~ 7 m '  there is virtually no beat-pipe effect seen 
in Fig. 10(a). Because the saturation profile is quite 
sharp, the temperature profile for this case is very 
similar to the conduction-only profiles shown in Fig. 
2 ; the liquid T profile is followed while S~ > 0, and a 
transition is made to the gas T profile at S, = 0. In 
Figs. 9(h) and 10(b), the Q, and Qt profiles illustrate 
the decrease in heat-pipe counterflow for decreasing 
permeability. When permeability is large (Fig. 9(b), 
k ffi 1 0 - ' :  and 10 -.3 mS), the counterflow is large 
enough to transfer all heat convectively, and an 
extended region of constant Qs and Q, develops, cor- 
responding to the isothermal zone seen in Fig. 9(a). 
For k = 10- ,4 m 2, this region disappears. For smaller 
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Table 4. Relative permeability functions shown in Fig. 8(a) 
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Function k~ k, s 

Linear St* l - S ?  
Verma et al. [19] Si .3 1.259- 1.7615S1" +0.5089Si *z 
Cubic [12, 13] Sj .3 (1-$1") 3 
Corey [18] St*' (I - Sj*) Z(l - Sl* 5) 
van Genuchten [20] (Sl*) I/Z[l - ( 1  - St* J/a)a] z, 2 = 0.45 i - k a  

Note : S~* is reduced liquid saturation, defined in terms of irreducible liquid and gas saturations 
in various ways for the different relative permeability functions. For the present work, we assume 
all irreducible saturations to be zero, that is, neither liquid nor gas phase is ever immobile under 
two-phase conditions, so S? = S~. 

values of  permeabil i ty (Fig. 10(b)), there is no region 
of  constant  Qg and Q~, and the peak flow decreases in 
magnitude and shifts to more negative values of  z. 
Despite the very different fluid flow patterns seen in 
Figs. 9(b) and 10(b), the heat-flow profile remains 
unchanged. 

6.3. Heat-source strength 
Figure I1 shows temperature and pressure (Fig. 

11 (a)), liquid-, gas-, and water-flow (Fig. 11 (b)), and 
heat-flow (Fig. l l(c)) profiles calculated for heat- 

source strength values of  Q~0 = 100, 200, 500, and 
1000 W m - '  using the Verma relative permeabili ty 
functions and the other values from Table 1. Figure 
! 1 (a) shows that  larger values of  Q~o yield a shorter 
heat pipe and steeper conduct ion gradients, which 
shift the heat pipe to larger values of  z. The overall 
pressure increase does not  change very much with 
variations in Q~o, so the heat-pipe temperature 
remains nearly constant.  

Figures 1 l (b)  and (c) show that  the magnitude of  
the l iqu id-vapor  counterflow is directly propor t ional  
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using them (b). The relative permeability functions are 

described in Table 4. 
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to Qc, demonstrating that heat transfer is convection 
dominated. In the liquid region beyond the heat pipe, 
liquid flow away from the heat source increases in 
magnitude with increasing Q,o. Recall from the defi- 
nition of  z that a shift in heat-pipe location to larger 
values of  z represents a heat pipe moving away from 
the heat source more rapidly. This rapid movement 
indicates more vapor formation, and requires a larger 
flow of liquid away from the heat source. 

For low values of  Q,o (I00 and 200 W m -  '), the 
heat-pipe region (with liquid flow toward the heat 
source) and outer liquid-flow region (with liquid flow 
away from the heat source) are well separated. How- 
ever, as Q,o increases and the conduction gradients 
become steeper, these two zones begin to overlap, 
resulting in a net decrease in the magnitude of  liquid 
flow. Because vapor flow does not similarly decrease, 
a non-zero water flow (liquid plus vapor) develops in 
the heat-pipe region and a corresponding increase in 
heat flow occurs, as shown in Fig. 11 (c). Further, for 
Q,0 -- 1000 w m -  ', the heat pipe occurs at such large 
values of  z that the Qc profile has already begun to 
decrease when the heat pipe begins, leading to an 
oscillation in Qc. 
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FIG. 11. The effect of heat.source strength on (a) temperature 
and pressure profiles, (b) mass-, liquid-, and gas-flow 

profiles, and (c) heat-flow profile. 

6.4. Capillary pressure function 
As is the case with relative permeability functions, 

a variety of  capillary pressure functions have been 
used to describe fluid flow through porous media. 
Unlike relative permeabilities, which always vary 
between zero and one, the magnitude of the capillary 
pressure depends on other physical properties of  the 
system, and this dependence makes it difficult to iso- 
late the influence of  capillary pressure function. Equa- 
tion (48) shows that the saturation-profile slope is 
inversely proportional to ~PdOS s. However, we have 
seen that this slope is controlled by the liquid relative 
permeability function when S~ is small. Hence, capil- 
lary pressure functions that vary over the entire range 
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Table 5. Values of t,,t, the earliest time at which T ffi 7",, 
for various initial conditions, calculated from equation (44) 
(Q~o=500Wm-t ~c = 2 . 2 W m  - I K - I , C ¢ - - 2 . 4 M J m  -~ 

K- l, r = 0.25 m) 

Depth Po? To~ T,~,(Po) t,,, 
(m) (MPa) (°C) (°C) (years) 

Partially 100 0.1 13 100 0.12 
saturated 300 0.1 19 100 0.08 

600 0. I 28 100 0.05 

Fully 300 3 19 234 137 
saturated 600 6 28 276 846 

900 9 37 303 2392 
! 200 12 46 325 4722 

?Atmospheric pressure for partially saturated cases, 
hydrostatic for fully saturated cases. 

~/VT-- 30°C km-~ with T-- 10°C at zero depth. 

of St, rather than primarily near $1,, tend to produce 
longer heat pipes. 

6.5. Rock compressibility 
The value of  rock compressibility,//, = 10-7 P a - ' ,  

used in the above examples is an order of  magnitude 
greater than typical values found in nature. Using a 
more realistic value of / / ,  = 10 - s  Pa-~, a calculation 
for the problem described in Table I yields identical 
results to those shown in Fig. 4, except that the outer 
liquid flow extends to larger values of z. As noted 
previously, small integration steps are necessary for 
large values of z, so extending the limits of integration 
to large z requires increased computational effort. As 
long as the rock compressibility used is small relative 
to gas-phase and two-phase water compressibilities, it 
will affect only the solution in the liquid zone. 

6.6. Initial conditions 
Initial temperature To and pressure P0 greatly 

influence the fluid and heat flows that occur in re- 
sponse to a heat source. For  a heat pipe to develop, 
the fluid must be volatile, that is, near its saturation 
temperature, which is determined by P0. For  partially 

saturated media, To increases with depth while P0 
and, therefore, T,~t(Po) remain essentially constant. 
Thus, the temperature around a deep heat source 
increases from To to T,~t in a shorter length of time 
(larger value of  ~/) than does the temperature around 
a shallow heat source. For  fully saturated media, both 
To and Po increase as depth increases, with Tm,(Po) 
growing more rapidly than To. Thus, T = T,~t at a 
later time (smaller value of  w/) for a deeper heat source. 
Equation (44) for the conduction-only temperature 
distribution may be used to determine ~,,t, the 
largest value of ~ for which T >/T,~,. For  a given 
radial distance, ff~, determines the earliest time after 
waste emplacement when saturation temperature is 
reached ; this time is denoted t~t. Table 5 shows t~t for 
various heat-source depths, calculated using equation 
(44) and a value of r = 0.25 m. It is apparent that P0 
plays the dominant role in controlling t,~,. If we allow 
for the heat-source strength decline with time that 
is characteristic of nuclear waste repositories, it is 
unlikely that saturation temperature will ever be 
reached for the fully saturated cases in Table 5. 

Table 6 shows t,~, for some proposed repository 
conditions. As expected, tsar is smallest for the partially 
saturated Yucca Mountain site. Despite the large 
value of  P0, the value of tM, is also quite small for the 
Stripa site because of the high heat-flow rate Q~o = 
1385 W m-  t. Similarly, the large value of t~, for the 
Mol-Dessel site is largely due to the low heat-flow 
rate Q~o -- 300 w m -  ~. 

The P0 values in Table 6 are based on an initial 
repository pressure that is equal to the ambient pres- 
sure. For  repositories in fully saturated media, this is 
not a good assumption if the repository is ventilated 
with atmospheric air or if backfill pressure is less than 
ambient pressure. In this case, non-uniform initial 
conditions preclude use of  the similarity transfor- 
mation and the results presented in this paper are 
not applicable. Although two-phase conditions may 
evolve, heat-pipe development is not expected under 
these circumstances, because a driving force for gas- 
phase flow away from the heat source is required for 

Table 6. Values of t~t, the earliest time at which T -- T,,,, for various proposed repository sites, calculated from equation 
(44) with • -- 0.25 m. The granite, basalt, and clay sites are water saturated 

Repository Kc Cc Age of 
Geologic setting depth Po To T,,t (W m- a (MJ m- ~ waste Q,o t,,, 
(example site) (m) (MPa) (°C) (°C) K -~) K -~) (years) (W m- ') (years) 

Partially saturated 348 0. I 24 I00 2.3 2.4 8 636? 0.03 
tuff [21] (Yucca 
Mountain, U.S.A.) 

Granite [22, 23] 340 2 I0 212 3.2 2.1 5 1385 0.21 
(Stripa, Sweden) 

Basalt [24] 900 9 33 303 2.3 2.7 l0 691 85 
(Hanford, U.S.A.) 

Clay [25] 220 2.2 16 217 1.7 2.8 50 300? 2456 
(Mol-Dessel, 
Belgium) 

t Not given in reference, estimated from information on areal loading, age of waste, and emplacement configuration. 
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a heat pipe to occur. This force is absent if the pressure 
at the heat source is less than the ambient pressure. 

7. S U M M A R Y  AND CONCLUSIONS 

The mass and energy transport equations for one- 
dimensional radial flow in a homogeneous porous 
medium depend on time t and distance r only through 
the similarity variable ~l = r/x/t. If initial and bound- 
ary conditions can be written as functions of  7, then 
the entire flow problem can be solved in terms of the 
similarity variable. A practically important case for 
which this is possible is that involving a constant-rate 
line source at r = 0 and uniform initial conditions. 

We have applied the similarity variable concept to 
solve an idealized version of the problem of  fluid 
and heat flow near high-level nuclear waste packages 
emplaced in geologic media. The cylindrical waste 
package is approximated by a linear heat source at 
r -- 0. By means of  the similarity transformation, the 
partial differential equations for fluid and heat flow 
are converted to a set of  ordinary differential equa- 
tions in r/. These ordinary differential equations can 
be solved with the iterative 'shooting method'. The 
accuracy and efficiency of  the similarity solution 
approach has been demonstrated by comparison with 
numerical finite-difference simulations. We have pre- 
sented illustrative examples to show the dependence 
of fluid- and beat-flow patterns and heat-pipe con- 
ditions on relative and absolute permeability and on 
other parameters of  interest. 

The most important application of  the approach 
developed in this paper is for the evaluation of  ther- 
mohydrologic conditions that will develop near high- 
level nuclear waste packages emplaced in the partially 
saturated fractured tufts at Yucca Mountain. A 
realistic appraisal will require solving the full equation 
system, including air, and making provisions for deal- 
ing with the extremely non-linear relative permeability 
relationships characteristic of a fractured-porous 
medium [8]. This approach appears quite feasible and 
is currently under development. A peculiar issue in 
nuclear waste disposal arises from the decline of heat 
output with time. However, the constant-rate solution 
obtainable from the similarity method will give an 
acceptable approximation for the early time period 
(tens of years) when thermal effects in the host rock 
are strongest. Long-time predictions for a heat source 
with strength maintained constant at the initial rate 
are also useful because they provide conservative 
limits for thermohydrologic effects. The similarity 
solution can also serve as a benchmark for testing the 
accuracy of  complex numerical simulators for multi- 
phase fluid and heat flow. 
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APPENDIX: THERMOPHYSICAL PROPERTIES 

The constitutive relationships used to define the thermo- 
dynamic parameters in terms of the primary variables are 
taken from the numerical model TOUGH [16], described in 
Section 5. 

Steam tables, given by the International Formulation 
Committee [26], provide closed-form expressions for P, u, h, 
/~, and a (used in P,) as functions of P and T. Saturation 
temperature T~, is considered to be solely a function of 
gas-phase pressure Ps; that is, vapor-pressure lowering is 
neglected. 

Relative permeabilities krl and/% and capillary pressure 
P~ are functions of liquid and gas saturation St and S~; 
examples are shown in Tables 1 and 4. Thermal conductivity 
x also varies with liquid saturation, as given by [10. 11] 

x =IcB+ (S0 v : (x l -  x=) (AI) 

where xs and x~ are the values of thermal conductivity for 
dry and liquid-saturated rock. respectively. 

Porosity depends on pressure and temperature 

~b = ~b0 exp [#~(P-Po)+¢r(T-To)] (A2) 

where ,St and :~r are constant rock compressibility and rock 
expansivity, respectively, and 40 is the value of porosity for 
Pg = P0 and T = To. 

Intrinsic permeability k, rock density PF, and rock specific 
heat cr are assumed to be constants. The relationships needed 
for two-component systems including air are not included 
here, but may be found in the description of TOUGH [16]. 

SOLUTION DE SIMILITUDE POUR UN FLUIDE DIPHASIQUE ET LE FLUX DE 
CHALEUR PRES DE DECHETS FORTEMENT RADIOACTIFS PLACES DANS DES 

MILIEUX POREUX 

Rrsumr---L'emplacement d'une source de chaleur telle qu'un lot de drchets fortement nuclraire, dans un 
milieu grologique provoque un couplage intense entre les comportements thermiques et hydrologiques. 
Dans certaines conditions, un caloduc se drveloppe avec un impact significatif sur les conditions ~i la source 
de chaleur. Darts un milieu infini, homogrne et permrable avec une source thermique linraire uniforme, 
les 6quations aux drrivres partielles pour une gromrtrie radiale peuvent ~:tre transformres en 6quations 
diffrrentielles en utilisant une variable de similitude t /=  r/x/t. Ces 6quations sont intrgrres numrriquement 
en utilisant une m&hode de tir itrrative pour avoir une description des temprratures, des pressions, de la 
saturation, du flux thermique, du drbit masse de gaz et de liquide autour de la source. La solution est 
vrdfire par des simulations numrriques aux diffrrences finies. Des solutions sont donnres pour un domaine 
de paramrtres hydrologiques et thermiques et on discute le comportement de caloduc pour certaines 

conditions. 

EINE gHNLICHKEITSLOSUNG FOR ZWEIPHASEN-STROMUNG UND 
-WgRMEOBERGANG IN DER UMGEBUNG VON, IN EINEM POROSEN 

MEDIUM EINGELAGERTEM, HOCH-RADIOAKTIVEM ATOMMOLL 

Zusammenfassuag--Die Einbettung einer W,~rmequelle, z. B. die Einlagerung yon hoch-radioaktivem 
Atommfill, in ein geoiogisches Umfeld, ffihrt zu stark gekoppelten thermischen und hydrologischen Vor- 
giingen. Unter gewissen Umsuinden kann sich eine Art W,~rmerohr entwickeln, welches erhebliche Auswir- 
kungen aufdie Zustfinde an der W/irmequelle besitzt. In einem unendlichen, homogenen und durchl~ssigen 
Medium mit einer linearen W~rmequelle konstanter Leistung k6nnen die partiellen Differ- 
entialgleichungen ffir das umgebende Fluid zur Bestimmung der radialen W~.rmestr6me angegeben werden. 
Diese Gleiehungen krnnen durch das Einf'fihren einer Xhnlichkeitsvariablen der Form r /= r/x/t in gewrhn- 
liche Differentialgleichungen umgewaodelt werden. Werden diese Gleichungen mit einer 'shooting'- 
Methode auf numeriscbem Wege integrien, so k6nnen die Temperatur-, Druck- uod S~ttigungsbedin- 
gungen sowie die W~.rme-, Gas- und Flfissigkeitsstrrmungen in der Umgebung der W~rmequelle an- 
gegeben werden. Die .~hnlichkeitslrsung wird mit Hilfe einer numerischen Finite-Differenzen-Methode 
fiberprfift. Grafische Darstellungen der L6sungen werden f~r eine Reihe yon hydrologischen und 
thermischen Parametern angegeben. AbschlieBend wird die Wahrscheinlichkeit der Entstehung eines 

W,~rmerohrs ffir die Bedingungen an verschiedenen vorgeschlagenen Lagerst,~tten diskutiert. 

14~ ~13:lb.t 
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ABTOMO~F.JIbHOE P E m E H H E  ~ I ~ [  r lOTOKA ~ B F X ~ A 3 H O I ~  X I 4 ~ O C T H  H T E ~  Y 
KOHTE]RHEPOB C 2 ~ E P H b l M H  O T X O ~ 4 H  C BblCOKHM F1K)BHEM P A ~ H A U H H ,  

I'[OMEll][EHHblX B FIOPHCTblE CP E~b l  

AIiOTIJm---HCTOqHffE TelUia (rOHTCI~icp ¢ paXilOalTilllJHidMlll OTXO,IIaMII), noMeLUelOIld~ S i 'COJlOri~- 
~ ,  BM3MB~'tl " CHJIbHlde H3MeH~[HN B C~ TCIIJIODOM H I'H~pOJIOTHq~lCOM [IOBC~I~HHH. ['IpH Ollp(~o 

Jxe~cmlb~x yc~onssx c p ¢ ~  Mo~mo paCO4a1"pUSaTb xax Ten~onylo Tpy6y, o x a 3 b m a i o ~  no3~eRcTsse 
ua ycnos~  y ucro~mta TenJm. B ~ 6ecxoRe~oil o ~ o p o ~ o R  npOHm~cMoR cpema c ~tm~efm1.L,~ 
nc'roqmutOM Ten.,m nocrommom MOUmOCTX Mo:imo npeo6pa3ouT~ mi~peHumulbHue ypa-nexms n 
qaCTHbiX npoH3nO~J]b~, onpc~enmoume noToJ~ ~SmIEOCTH H TellJla B pa~iga.ni,HoJt reoMeTpHe, n 06biX- 
HOBCHHb/e ~ H ~ H b / C  ypaBHCHHI C HCIIOJIb3OBaHHCM IICpCMeHHOR flO~O~HI f~ == r/%/|. ~II~IMC 
ypasHCHXX qxc~©Hno mrrerpnpymTcS rrepa~OHHUM MeTO~OM "npHcTpenxx" c Uenbm o n x c a n n  
honer  TeMncpaTypr, z, ~aaneHg.q, HacbmlCHHS, Tennonoro noToxa, a Tal~¢ noToson ra3a H XCH~IX0CTH 
noEpyr Taxoro HCTO*im~rs Tenna. AnTOMO~teJ~HOe pemch'HC n o ~ r n e p l ~ r c s  ¢ noMottlMo qHCneHHI~X 
MeTOnOn xone,umx p~3aOCTCg, l ' [paeonmr~ anmocTpaT~nnmae pemcnHx ~Lq pmxa rH~ponornrqec~nx 
Tennon~ax napaMeTpOn. O ~  seporruocT~ o6pa~osamax TennonoR Tpy6~x n y~oe~xx  H ~ O -  

m,xv, x npe~aO~eHH~Xx pacnono~eHHA x p a H ~ n m  ~epH~aX OTXO~On. 


